
�
The Importance of Atomic Development

 
 
Atomic design is a methodology for creating design systems, which involves 
five distinct levels: atoms, molecules, organisms, templates, and pages. It 
allows for the construction of robust and scalable interface design systems 
by breaking down interfaces into smaller components that work together 
effectively. 
 

 
Perplexity 
I can’t stress enough the importance of making atomic changes to 
established products. That’s the single learning I bring with me after 3 years 
of working on Avascan, a public good for the Avalanche community. 
At first, we didn’t really have a process: in the first year of R&D, right after we 
launched, we didn’t have a way of tracking different projects other than the 
very limited milestones tracker offered by Github. I would spend hours 
every day talking to our designer and trying to be very specific about what I 
thought should be displayed on each page. That was the period during 
which we didn’t ship a lot of features, just a couple in over 6 months. It was 
max pain, sacrificing so much in brainstorming new ideas to bring data to 
use, yet with nothing to show for a long time. 
Then, in 2022 the team grew 3x in size, and we took in a Product Manager 
that was in charge of establishing a very rigid and solid process of product 
development, mostly through Jira. Stand-up calls every day, 2-weeks sprints 
and twice-a-week release cycles. Avascan started shipping new things and 
solidifying the frontend codebase, which changed from vanilla JS to React, 
using a new and more compact design system, and I moved to other things, 
trying to find a business model. Then, in 2023 we worked on Routescan as a 
side project, that quickly grew to be the third block explorer provider in 
the EVM industry, after Etherscan and Blockscout, with still much more 
room to grow. 
The thing is, Routescan has a very clear goal: stay on track with the 
Etherscan feature set, take inspiration from the UX as much as possible, and 
make it natively multi-chain in every way possible. This is how we can 
realistically overtake the industry, and it took me a while to understand it: 
looking at a competitor’s product and adding a Unique Value Proposition 
that changes design and feature set in a way that’s distinguishable and 
unique. In fact, Routescan and Etherscan are very different in a lot of ways, 
and even in the feature set now (some things don’t make sense for single-
chain explorers, while they do make sense for multi-chain ones, and 
viceversa). 
At the same time, Avascan took a great part of 2023 to build features and 
pages that were long awaited, and that were released just a few days ago: 
new Staking features, with historical data that many explorers do not have. 
But the ‘issue’ with Avascan is that, since it’s an Avalanche public good 
funded (and now paid) by the Foundation, most of the data that we have 
and can show don’t have a history in other products. 
Or at least, not a good history. 
That’s where we can innovate

https://jaack.montaigne.io/
https://www.perplexity.ai/search/atomic-design-pEj429S0QJKF4NfddkXsaA?s=c


That s where we can innovate. 
That’s where we can experiment. 

That’s where we can push the industry forward. 
By thinking about new things, and in new ways, because Routescan is now a 
business, and Avascan is a public good first, so we can afford it. 
That’s why, starting this month, we’re changing the approach with Avascan: 

Shorter release cycles (as much as once per day)
Shorter sprints (not more than one week)
Faster prototyping

The last one is a deal-breaker: with faster prototyping, we can focus on one 
or two mini-projects at a time, and iterating on each one very quickly and 
atomically. 
This is the biggest challenge, for me as well: being able to choose the single, 
simplest and easiest thing to do that can have the highest impact on the 
product, and work on that alone. Then, starting from that to build on new, 
extremely small incremental changes that will make the difference in the 
long run. 
After all, we don’t have the slightest idea to know that the path we’re choosing is 
the best, so we can’t take anything for granted. We must put one feet in front 
of the other and walk slowly, and ask everyone around us if we’re doing 
good. 
And we're not doing this out of blue: this year started in a bull market, and 
everyone's crazy about anything crypto. Trends come and go in a week, and 
we can't possibly know what's gonna stick beforehand. We do know that 
some things may have a longer trend cycle than others, but we're talking 
about months instead of weeks. So the biggest reason we're doing this is 
because we're somewhat forced by the market. We can afford to stay on 
top of the market and do something that, in one year, can be great, but only 
if we iterate quickly, as quickly as the market changes idea about anything. 
Who remembers ERC-404 for example? The narrative has now been shifted 
to DN404, and both are not even standards! They're just experiments, and 
who knows if we're still going to talk about them 2 months from now. 
There are some major trends, of course, but even those morph quickly, so 
we need to be careful in modelling after those. 
I’m calling this approach Atomic Development. I thought I could borrow the 
term Atomic Design, but that’s different: for the design, the focus is on 
breaking down a system into smaller components, until we find the smallest 
one (atoms) that can be used to compose everything that we need. But for 
Atomic Development, the focus is on the choice of time vs. impact: what’s 
the single, easiest change we can make that has the most impact on 
the product overall? 
This approach has two pros and two cons, the way I see it. 
Pros 

Build every week on the momentum of the week before: since it’s a 
very easy change, it’s going to be released for sure and developers will 
have a boost of endorphins that will get them more involved over time
Build with extreme focus, at extreme quality: being able to only work 
on one-two projects at a time, and not seeing tens of tasks in a list, will 
get developers focus on the project at hand and (hopefully) deliver a 
better product that’s more tested.

 
Cons 

It’s not good for teams that are finding their MVP, since it’s a very 
cautious approach that will slow down the team
It’s not good for teams that deal with a lot of projects, since it builds 
on the focus you can put in very few things.

Is this the ultimate development workflow? 
I honestly don’t know. But we’ll find out.

Date: 2024-02-15
Words: 1129
Time to read: 5 mins

Newer Older

https://jaack.montaigne.io/fully-onchain-ticketing-with-zk-proofs
https://jaack.montaigne.io/fully-onchain-ticketing-with-zk-proofs
https://jaack.montaigne.io/some-etherscan-numbers
https://jaack.montaigne.io/some-etherscan-numbers


27th February 2024

Fully onchain ticketing with ZK p…

29th January 2024

Some Etherscan numbers

Jaack © 2022-2025

Tags Archive RSS feed Twitter Instagram GitHub Email QR Code

Made with Montaigne and bigmission 

https://jaack.montaigne.io/fully-onchain-ticketing-with-zk-proofs
https://jaack.montaigne.io/some-etherscan-numbers
https://jaack.montaigne.io/tags
https://jaack.montaigne.io/archive
https://jaack.montaigne.io/feed.xml
https://twitter.com/ijaack94
https://instagram.com/ijaack94
https://github.com/ijaack
mailto:hey@jaack.me
https://jaack.montaigne.io/qr
https://montaigne.io/
https://bigmission.com/
https://u24.gov.ua/

